Rain Harvesting, A Strategy for Water Saving

Friday, October 14, 2011

Rain Harvesting, A Strategy for Water Saving

Hydrology Cycle

Indonesia is a tropical country that has only two seasons climate, making it very dependent on the monsoon as a source of water to run the activities of its inhabitants. As a predominantly agricultural country, livelihoods as farmers, the idea of using rain harvesting strategy strongly supports such circumstances.
Rain harvesting is the accumulating and storing of rainwater for reuse before it reaches the aquifer It has been used to provide drinking water, water for livestock, water for irrigation, as well as other typical uses. The techniques usually found in Asia and Africa arise from practices employed by ancient civilizations within these regions and still serve as a major source of drinking water supply in rural areas. Commonly used systems are constructed of three principal components; namely, the catchment area, the collection device, and the conveyance system. Rain collected from the roofs of houses and local institutions can make an important contribution to the availability of drinking water. It can supplement the subsoil water level and increase urban greenery. Water collected from the ground, sometimes from areas which are especially prepared for this purpose, is called stormwater harvesting. In some cases, rainwater may be the only available, or economical, water source. Rainwater harvesting systems can be simple to construct from inexpensive local materials, and are potentially successful in most habitable locations. Roof rainwater can't be of good quality and may require treatment before consumption. As rainwater rushes from your roof it may carry pollutants, such as mercury from coal burning buildings, or bird feces. Although some rooftop materials may produce rainwater that would be harmful to human health as drinking water, it can be useful in flushing toilets, washing clothes, watering the garden and washing cars; these uses alone halve the amount of water used by a typical home.

Rain Harvesting Logically System

Basic Configuration

A) Catchment Areas

  • Rooftop catchments: In the most basic form of this technology, rainwater is collected in simple vessels at the edge of the roof. Variations on this basic approach include collection of rainwater in gutters which drain to the collection vessel through down-pipes constructed for this purpose, and/or the diversion of rainwater from the gutters to containers for settling particulates before being conveyed to the storage container for the domestic use. As the rooftop is the main catchment area, the amount and quality of rainwater collected depends on the area and type of roofing material. Reasonably pure rainwater can be collected from roofs constructed with galvanized corrugated iron, aluminium or asbestos cement sheets, tiles and slates, although thatched roofs tied with bamboo gutters and laid in proper slopes can produce almost the same amount of runoff less expensively (Gould, 1992). However, the bamboo roofs are least suitable because of possible health hazards. Similarly, roofs with metallic paint or other coatings are not recommended as they may impart tastes or colour to the collected water. Roof catchments should also be cleaned regularly to remove dust, leaves and bird droppings so as to maintain the quality of the product water . 
  • Land surface catchments: Rainwater harvesting using ground or land surface catchment areas is less complex way of collecting rainwater. It involves improving runoff capacity of the land surface through various techniques including collection of runoff with drain pipes and storage of collected water. Compared to rooftop catchment techniques, ground catchment techniques provide more opportunity for collecting water from a larger surface area. By retaining the flows (including flood flows) of small creeks and streams in small storage reservoirs (on surface or underground) created by low cost (e.g., earthen) dams, this technology can meet water demands during dry periods. There is a possibility of high rates of water loss due to infiltration into the ground, and, because of the often marginal quality of the water collected, this technique is mainly suitable for storing water for agricultural purposes. Various techniques available for increasing the runoff within ground catchment areas involve: i) clearing or altering vegetation cover, ii) increasing the land slope with artificial ground cover, and iii) reducing soil permeability by the soil compaction and application of chemicals.
  • Clearing or altering vegetation cover: Clearing vegetation from the ground can increase surface runoff but also can induce more soil erosion. Use of dense vegetation cover such as grass is usually suggested as it helps to both maintain an high rate of runoff and minimize soil erosion.
  • Increasing slope: Steeper slopes can allow rapid runoff of rainfall to the collector. However, the rate of runoff has to be controlled to minimise soil erosion from the catchment field. Use of plastic sheets, asphalt or tiles along with slope can further increase efficiency by reducing both evaporative losses and soil erosion. The use of flat sheets of galvanized iron with timber frames to prevent corrosion was recommended and constructed in the State of Victoria, Australia, about 65 years ago (Kenyon, 1929; cited in UNEP, 1982).
  • Soil compaction by physical means: This involves smoothing and compacting of soil surface using equipment such as graders and rollers. To increase the surface runoff and minimize soil erosion rates, conservation bench terraces are constructed along a slope perpendicular to runoff flow. The bench terraces are separated by the sloping collectors and provision is made for distributing the runoff evenly across the field strips as sheet flow. Excess flows are routed to a lower collector and stored (UNEP, 1982). 
  • Soil compaction by chemical treatments: In addition to clearing, shaping and compacting a catchment area, chemical applications with such soil treatments as sodium can significantly reduce the soil permeability. Use of aqueous solutions of a silicone-water repellent is another technique for enhancing soil compaction technologies. Though soil permeability can be reduced through chemical treatments, soil compaction can induce greater rates of soil erosion and may be expensive. Use of sodium-based chemicals may increase the salt content in the collected water, which may not be suitable both for drinking and irrigation purposes. 
B) Collection Devices
  • Storage tanks: Storage tanks for collecting rainwater harvested using guttering may be either above or below the ground. Precautions required in the use of storage tanks include provision of an adequate enclosure to minimise contamination from human, animal or other environmental contaminants, and a tight cover to prevent algal growth and the breeding of mosquitos. Open containers are not recommended for collecting water for drinking purposes. Various types of rainwater storage facilities can be found in practice. Among them are cylindrical ferrocement tanks and mortar jars. The ferrocement tank consists of a lightly reinforced concrete base on which is erected a circular vertical cylinder with a 10 mm steel base. This cylinder is further wrapped in two layers of light wire mesh to form the frame of the tank. Mortar jars are large jar shaped vessels constructed from wire reinforced mortar. The storage capacity needed should be calculated to take into consideration the length of any dry spells, the amount of rainfall, and the per capita water consumption rate. In most of the Asian countries, the winter months are dry, sometimes for weeks on end, and the annual average rainfall can occur within just a few days. In such circumstances, the storage capacity should be large enough to cover the demands of two to three weeks. For example, a three person household should have a minimum capacity of 3 (Persons) x 90 (l) x 20 (days) = 5 400 l. 
  • Rainfall water containers: As an alternative to storage tanks, battery tanks (i.e., interconnected tanks) made of pottery, ferrocement, or polyethylene may be suitable. The polyethylene tanks are compact but have a large storage capacity (ca. 1 000 to 2 000 l), are easy to clean and have many openings which can be fitted with fittings for connecting pipes. In Asia, jars made of earthen materials or ferrocement tanks are commonly used. During the 1980s, the use of rainwater catchment technologies, especially roof catchment systems, expanded rapidly in a number of regions, including Thailand where more than ten million 2 m3 ferrocement rainwater jars were built and many tens of thousands of larger ferrocement tanks were constructed between 1991 and 1993. Early problems with the jar design were quickly addressed by including a metal cover using readily available, standard brass fixtures. The immense success of the jar programme springs from the fact that the technology met a real need, was affordable, and invited community participation. The programme also captured the imagination and support of not only the citizens, but also of government at both local and national levels as well as community based organizations, small-scale enterprises and donor agencies. The introduction and rapid promotion of Bamboo reinforced tanks, however, was less successful because the bamboo was attacked by termites, bacteria and fungus. More than 50 000 tanks were built between 1986 and 1993 (mainly in Thailand and Indonesia) before a number started to fail, and, by the late 1980s, the bamboo reinforced tank design, which had promised to provide an excellent low-cost alternative to ferrocement tanks, had to be abandoned. 
    C) Conveyance Systems
      Conveyance systems are required to transfer the rainwater collected on the rooftops to the storage tanks. This is usually accomplished by making connections to one or more down-pipes connected to the rooftop gutters. When selecting a conveyance system, consideration should be given to the fact that, when it first starts to rain, dirt and debris from the rooftop and gutters will be washed into the down-pipe. Thus, the relatively clean water will only be available some time later in the storm. There are several possible choices to selectively collect clean water for the storage tanks. The most common is the down-pipe flap. With this flap it is possible to direct the first flush of water flow through the down-pipe, while later rainfall is diverted into a storage tank. When it starts to rain, the flap is left in the closed position, directing water to the down-pipe, and, later, opened when relatively clean water can be collected. A great disadvantage of using this type of conveyance control system is the necessity to observe the runoff quality and manually operate the flap. An alternative approach would be to automate the opening of the flap as described below. 
      A funnel-shaped insert is integrated into the down-pipe system. Because the upper edge of the funnel is not in direct contact with the sides of the down-pipe, and a small gap exists between the down-pipe walls and the funnel, water is free to flow both around the funnel and through the funnel. When it first starts to rain, the volume of water passing down the pipe is small, and the *dirty* water runs down the walls of the pipe, around the funnel and is discharged to the ground as is normally the case with rainwater guttering. However, as the rainfall continues, the volume of water increases and *clean* water fills the down-pipe. At this higher volume, the funnel collects the clean water and redirects it to a storage tank. The pipes used for the collection of rainwater, wherever possible, should be made of plastic, PVC or other inert substance, as the pH of rainwater can be low (acidic) and could cause corrosion, and mobilization of metals, in metal pipes. 
      In order to safely fill a rainwater storage tank, it is necessary to make sure that excess water can overflow, and that blockages in the pipes or dirt in the water do not cause damage or contamination of the water supply. The design of the funnel system, with the drain-pipe being larger than the rainwater tank feed-pipe, helps to ensure that the water supply is protected by allowing excess water to bypass the storage tank. A modification of this design is shown in Figure 5, which illustrates a simple overflow/bypass system. In this system, it also is possible to fill the tank from a municipal drinking water source, so that even during a prolonged drought the tank can be kept full. Care should be taken, however, to ensure that rainwater does not enter the drinking water distribution system.
    Advantages in Urban Area
      Rain harvesting can assure an independent water supply during water restrictions that is, though somewhat dependent on end use and maintenance, usually of acceptable quality for household needs and renewable at acceptable volumes, despite forecasted climate change  It produces beneficial externalities by reducing peak storm water runoff and processing costs. In municipalities with combined sewer systems, reducing storm runoff is especially important, because excess runoff during heavy storms leads to the discharge of raw sewage from outfalls when treatment plant capacity cannot handle the combined flow.
        Rain Harvesting in Urban Area
      Rain harvesting systems are simple to install and operate. Running costs are negligible, and they provide water at the point of consumption. Rainwater harvesting in urban communities has been made possible by various companies. Their tanks provide an attractive yet effective solution to rainwater catchment.
        Water Quality
          As rainwater may be contaminated due to pollutants like microscopic germs etc., it is often not considered suitable for drinking without treatment. However, there are many examples of rainwater being used for all purposes — including drinking — following suitable treatment.
          Rainwater harvested from roofs can contain human, animal and bird faeces,mosses and lichens, windblown dust, particulates from urban pollution, pesticides, and inorganic icons from the sea ( Ca, Mg, Na, K, Cl. SO4), and dissolved gases (CO2, NOx, SOx). High levels of pesticide have been found in rainwater in Europe with the highest concentrations occurring in the first rain immediately after a dry spell; the concentration of these and other contaminants are reduced significantly by diverting the initial flow of water to waste as described above. The water may need to be analysed properly, and used in a way appropriate to its safety. Harvested rainwater is boiled in parabolic solar cooker before being used for drinking.In Brazil alum  and chlorine is added to disinfect water before consumption.So-called "appropiate  technology" methods, such as solar water disinfection, provide low-cost disinfection options for treatment of stored rainwater for drinking.
          Do's and Don'ts
          Harvested rainwater is used for direct usage or for recharging aquifers. It is most important to ensure that the rainwater caught is free from pollutants. Following precautionary measures should be taken while harvesting rainwater:-
          • Roof or terraces uses for harvesting should be clean, free from dust, algal plants etc.
          • Roof should not be painted since most paints contain toxic substances and may peel off.
          • Do not store chemicals, rusting iron, manure or detergent on the roof.
          • Nesting of birds on the roof should be prevented.
          • Terraces should not be used for toilets either by human beings or by pets.
          • Provide gratings at mouth of each drainpipe on terraces to trap leaves debris and floating materials.
          • Provision of first rain separator should be made to flush off first rains.
          • Do not use polluted water to recharge ground water.
          • Ground water should only be recharged by rainwater.
          • Before recharging, suitable arrangements of filtering should be provided.
          • Filter media should be cleaned before every monsoon season.
          • During rainy season, the whole system (roof catchment, pipes, screens, first flush, filters, tanks) should be checked before and after each rain and preferably cleaned after every dry period exceeding a month.
          • At the end of the dry season and just before the first shower of rain is anticipated, the storage tank should be scrubbed and flushed off all sediments and debris.
          It is important that the system is sized to meet the water demand throughout the dry season. Generally speaking, the size of the storage tank should be big enough to meet the daily water requirement throughout the dry season. In addition, the size of the catchment area or roof should be large enough to fill the tank.

          Rain harvesting system has not been popularly used in Indonesia, although the technology is actually very simple and not so expensive. This should need the government's role in socializing the system so that people can be optimally utilized in an attempt to address the needs of water in dry season.  The only thing that it should be noted that this tenologi can be used as an alternative to the use of rainwater for support needs for water for the inhabitants. However, it would be advisable to use this system in the community approach first and the acquaintance the system to the community. It will help the people be able to maintain this technology correctly , keep clean the water stored in the tank, so it can be safely to use
          Hence, hopefully this article would be very useful for readers, practitioners and proffesionals in the field of water resource development. May we all have an insight in preserving the existing of  limited water resources so we can be located it for the next generation's life.

            No comments:

            Post a Comment